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DECENTRALIZED CONTROL FOR LARGE SCALE HEREDITARY SYSTEMS*

J. A. Reneke and R. E. Fennell

Department of Mathematical Sciences

Clemson University

Clemson, S. C. 29631

Abstract: A control strategy, which allows some level of autonomous

component control, for large scale hereditary systems is presented. The

basic problem considered is how to add conditions to the component

objectives and to arrange exchanges of information which enable all

components to achieve their objectives. The approach requires that

component interactions be suitably limited so that variational methods can

be used to determine component controls independently. A reproducing

kernel Hilbert space of Heilinger integrable functions provides the setting

for the description of system operators and the analysis of optimization

problems.

* This research was supported in part by the Air Force Office of

Scientific Research under Grant AFOSR-84-0236.

Keywords: Decentralized control, hereditary systems.

Abbreviated Title: Decentralized Control.



DECENTRALIZED CONTROL FOR LARGE SCALE HEREDITARY SYSTEMS

J. A. Reneke and R.E. Fennell

1. Introduction. We present the mathematical theory of a decentralized

control strategy which allows some level of autonomous component control

for-- large scale systems. To indicate the difficulties of decentralized

control, consider the problem of two controllers independently choosing

controls to steer the two component system

from a given initial position to a desired terminal position. Although the

second component objective can be achieved independent of the first, some

information about the second component is necessary for the simultaneous

achievement of the first objective. The basic problem considered in this

* paper, a coordination problem, is how to add conditions to the component

objectives and arrange exchanges of information which will enable all of the

*components to achieve their objectives autonomously. Our approach to to

the solution of this problem requires that component interactions be

suitably limited so that variational methods can be used to determine

component control laws.

Current interest in coordination of large scale systems is concentrated

* . on the problem of system optimization for hierarchical or multilevel systems

(4], (14], [15]. Methods employed are typically off line iterative and are

usually only applied to finite dimensional state space systems. Our

methods apply to systems modelled by delay differential equations and

integral equations. Also application of these methods to control

coordination problems for large scale systems leads to closed loop controls.

2
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requirements and using the results of the local optimization problems

developed in Section III. Finite dimensional state space systems whose

system matrix is block triangular or decomposed by strong components [8]

are stably connected. In Section II1 we indicate how coordination

strategies can be developed for two component and other multicomponent

* - systems.

2. Preliminaries. For Or<T let S denote the interval [-r,T], X = Ed

denote the space of real d-tuples with the usual inner product <.,.> and

norm I-I. Let G denote the space of functions from S to X which are

continuous on S except, possibly, for a jump discontinuity at t = 0

(assume right continuity at 0), and let associated semi-norms be defined

by N x(f) = sup- r txf(t)I for x in S and f in G. Let k be a

nondecreasing, right continuous function on S with k(-r) = 1 and a jump

discontinuity at t = 0. We define B to be the set of linear transformations

of G to which B belongs provided 1) [Bf](t) = 0 for -r<_t<0 and 2) there is

a constant b such that for any u, v in S with u_<v, I[Bf](v)-[Bf](u)l <-

bfv N (f)dk(x). Operators in B are bounded transformations from
u x

(G,NT) to (G,NT}. Systems whose dynamics can be described by an

operator equation of the form h = f * Bh with B in B are referred to as

hereditary systems. The defining properties of the class B not only

, * guarantee the existence and uniqueness of solutions to the systems under

consideration but also imply the invertibility of the system input-output

operator.

THEOREM 2.1 (12] If B is in B then I-B maps (G,NT} onto (G,NT} and

I-B has a bounded inverse.

4



Thus for B in B and A = (I-B) "  we have the equivalent system

realizations
.'--

h = f + Bh + Ou and h A(f + au) (2.1)

where f, u in G denote system inputs and controls and 5 denotes a linear

transformation from X to X. One should note that [Af](t) = f(t) for each

f in G and -r<_tO.

Example 2.1. As an example consider a system of delay differential

equations of the form

h'(t) = lh(t) + 2 h(t-r) + A1 v 1 (t) + 02 v 2 (t) + e(t)

for O_t T and initial condition h(t) = 0(t) for -rtO. Here al' :2" 2

frepresent matrices of appropriate dimension and r denotes a delay

parameter. Taking [Bh (t) 0 for -r<_t 0 and EBh] (t) =

I [ah( ) 2 h(r-r)]dt for 0<t_ T, the system may be written as

h = f + Bh + 1 u+ a u (2.2)Bl1  B2u 2

.pft

with f(t) = 0(t) for -r<_t O, f(t) = C0() + I e(t)dt for 0_t$T and u.(t) = 0
ft.. I

for -r-_t<0, ui(t) = v (t)dc for 0<_t T , i = 1,2. With k(t) = 1 r~t for

-r-_t<0 and k(t) = 2+rt for 0-t T, it follows that B is in B. The jump

discontinuity in k at t 0 allows a similar discontinuity in the solutions of

(2.2).

Analysis of the optimal control problems to be considered is simplified

-when the domain of operators in B is restricted to the reproducing kernel

Hilbert space GH of Hellinger integrable functions. Defining properties of

this spa'ce may be found in the papers [2], [6], [12]. For completeness

we mention those properties which will be used in this paper. The space

OH  is the subspace of G with inner product denoted by 0 H(''

5



associated norm N H( and reproducing kernel K defined by K(s,t)x

k(s)x for -r-<sst<T, =k(t)x for -r~t~s :T with x in X. Here we restrict k

as defined in Example 2.1. The kernel K maps SxS into the linear

*transformations of X and satisfies K(.,t)x is in G H and <f(t),x>

QH (f,K( ,t)x) for each t in S and x in X. It may be shown shown that

Q (fg) = f-)g-) -<df,dg>/dk where I- <df,dg>/dk is theH' r -r

limit through refinement of the approximating sums

Z~fs ifsi.) ,g(s. )-g(s. i)>/(k(s4 -k(s i1)) with (s .: i = 0,... ,n} a

partition of S. The following result motivates us to restrict attention to

systems described by operator equations on (G HQH).

COROLLARY 2.2 [12] If B is in B then I-B maps (GHP N H onto

(GH' N H1 and A = (I-B) is a bounded transformation from (G Ht NH} onto

(GH NH}.

For future reference we define on GH the family of projection

operators (P t: t in S) by [P t ](s) = f(s) for -r- s:5t T and [P tf (S) =f M)

for -r-<t<s:ST. It may be shown that operators B in B and A = (I--B) 1

satisfy the causal property P tB =P tBPtJP PtA P PtAP t for all t in S. It is

also useful to note that B1 (l-B 2), (I-B 2) 1 B1 . and B 1 B 2 are in B

whenever B1 , B 2 are in B. We will make frequent use of the operator C
tin B defined by [Ch](t) = 0 for -r<-t<- and [Ch](t) = 1f0 h(tr)dk(tc) for

0 st<T. The adjoint of C is given by [C*h](t) K(t,T)h(T) -K(t,0)h(0)

-[Ch] (t) since

H Q(fC*h) 0 HQ(Cfh) T f~h

= <f(T),h(T)> <f(O),h(0)> - I T<df, h>

= <f(T),h(T)> -<f(0),h(0)> - IT ddh>k

= Q H(fK( ,T)h(T)-K( ,0)h(Q)-Ch)

6



for alif, h in G H* Finally, for sufficiently smooth functions note that

NH f If (0) 1 +f 0TIf'(t-) 12d-, and, hence, NH2 (Ch) =IT h 2 ().
H 0 H0

We conclude this section by stating a controllability assumption for

hereditary systems. Let 0 be a linear transformation from X to X and let

G Udenote the set of u in G H with the property that P 0 u = 0 and u(t)

belongs to the orthogonal complement of the null space of 5 for -r-<t<T.

Note that G Uis a closed subspace of G H We restrict attention to

controls u in G U,

Controllability Assumption: For B in B, and 5 a linear transformation from

X to X assume Aa = (I-B) 0 maps G U on to (1-PO0)G H'

Note that for a = I the invertibility of the input output operator A

guarantees controllability. For delay differential equations, (2.1), this

assumption implies function space controllability, [1], (7], (13].

3. Local Optimization Problems. The control coordination strategy to be

introduced in Section IV requires that component interactions be suitably

limited and certain side conditions be added to the component control

objective. Local control problems can then be solved without full

information of the actions of other component controllers. Lagrange

multiplier methods are used to characterize the solution to the local control

problems.

In this section, we are concerned with system components whose

signal diagram is of the form

Figure 1

7



I.,''

Here A = (I-B) -1 with B in B; f in GH is a known input signal; g in GH

is an unknown input; u in GU is the component control; and 5, " denote

linear transformations from X to X. The signal g represents the effect of
other components upon the. given component. We assume P :g = 0 and will

add other conditions necessary for the solution of the local optimization

problems.

Two optimization problems will be considered, each is typical of the

type of local problems which must be solved by the component controllers.

Let D belong to B; b and Y be in G H; and c, c be in X.

Local Optimization Problem I. (LOP I)

Minimize on GUxGH: J(u,h) = iNH(Aau) + jNH(C(y-Y))

Subject to: h = A(f+g ou)

h(t) = b(t) T- r-_tm;T

[Dh](T-r) = c

* y = Th'7 .1"' -1

given that [(-3-*C ') 1Ag](T-r) = c and D(I--*C ) Ag : 0.

Here the control objective is to force the response h to agree with b

over the terminal interval while at the same time steering the response y

along a desired trajectory Y. The conditions [(1-T"C-1 ) As](T-r) = c

and D(I-T*C-T) -1Ag = 0 summarize the information about g that allows the

controller to solve the optimization problem. The rationale for these

restrictions will become apparent in the proof. In the performance index

2for LOP I the term JN (C(y-Y)) corresponds to the standard quadratic

T 17 2cost functional Rf0 (y-Y)-dt whereas the term :N H(A u) is novel and

represents a penalty on the response of the system rather than a direct

penalty on the control energy.

8
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In order to guarantee the existence of a feasible solution, we make

the following assumption.

Regularity Assumption: Given c in X there exists a u in G and h in G
U H

such that h = Aau, h(t) = 0 for T-r-t<T, and [Dh](T-r) = c.

Recall that reproducing kernel Hilbert spaces are characterized by the fact

that function evaluation is a continuous linear functional. Consequently,

the constraint set for this problem is a closed convex set. A slight

modification of the basic argument for minimum norm problems [5] yields

the existence of a unique solution to LOP I. In order to characterize this

solution, LOP I can be reformulated as a optimization problem in the

Hilbert space G u xG H It should be noted that the condition h(t) = b(t)

for T-rt-T is equivalent to the conditions h(T) = b(T) and (I-PT-r)(h-b)

= 0.

The Lagrange Multiplier Theorem asserts that if (u,h) minimizes J

subject to the constraints then there exists elements ) and , of GH and u±,

v in X such that QH(Aa6u,A~u-X) QH(6h, T*C*C(rh-Y) X + (I-P Tr) +

K( ,T)u D*K( ,T-r)v) = 0 for all (6u,8h) in GUXGH. Let r = (I-PT-r )r

then P Trr = 0. Using the controllability assumption, it follows that Alu =

(I-P 0 ))X and tr*C*C(rh-Y) + * K * K( ,T)i * D*K( ,T-r)v = 0. Since

[C*h](t) = K(t,T)h(T) - K(O,T)h(O) - [Ch](t), one obtains after

eliminating . from the previous equation

= r*C'2 rh-Y) + (1/(lr))K( ,T)X(O)

(1/(l~r)K( ,T)[D*K(,T-r)v](O) - D*K( ,T-r)v -

and

(I-P0) X r*C-(rh-Y) k ,(0)) k2  ,v) - (3.1)

9



where k 1 (t,%(O)) = [r 1 (l-P 0 )K( ,T)X(O)](t), k 2 (t,v) =

((l-P 0 )(rlk( ,T)[D*K( ,T-r)v](O)-D K( ,T-r)v}](t) and r =1 /(1 r). Note

", that for fixed t in S kI(t,X(O)) and k2 (t,v) are linear in X(O) and v.

Since h = AUf-gu) = A(f-g)*(l-P 0 )X, it follows that

h = (I-T*C 2 )' 1(A(f-g) - r*C2Y + k( ,X(O)) * k( ,v) - i}. (3.2)

The constraints imply h = I- PTr )b-P T-rh. Also the causal

properties of (l-T*C-2 ") and D(I-T*C- ) together with the fact that

l T-r- = 0 imply that PT-rr(I-r*C2'7'T) = 0 and PT-r [(f-r*Ca ) I KI = 0.

Using these observations we obtain the following linear system of equations

for X(O) and v:
.

-1 2 -1 -
b(T-r) = [(l-*C) Af](T-r) + c - [(I-T*C ') -*C Y](T-r)

(3.3)

A" c = [D(I-r*C2 r)'Af](T-r) - [D(I-'*C2 ) - I *C2 Y] (T-r)
S [D(I-r*c2 '7)'l1 kl( ,X(0))+k,(,v)I]CT-r).

It is apparent that the conditions [(I- T*C 2 r) 1 Ag(T-r) and

D(I-T*C 2 r)'1Ag = 0 allow us to solve for X(O) and v with *limited knowledge

of g. Using the constraint (l-PT-r)(h-b) 0 and the fact that r = A(f~g)

* k1C X(0)) + k2 t ,V) - (l-P'C 2 )h + r*C-Y, we obtain from (3.1), (3.2)

the following theorem.

THEOREM 2.3. The pair (u,h) in GUxGH solves LOP I if and only if the

trajectory h has the form

h = (l-PTr)b PTr(I-T*C-) (A(f-S) - T*CY k1 (,)(0)) k2 ( ,v)}

K, (3.4)

10
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and the control u has the form

U = w1  w2  w 3  (3.5)

where

-1 ' 2

w2 = 5"A-(l.-'*C2 W(lPT-r)b
-1 A - I (I- TC 2 1) (1I- PTr ( I -*C 2 T) -1 {A (fq) - *C 2y Y

w= 5-1A-1(r *CTr) (PT i_ C21) -1 k X(0))+k

Here X(), v satisfy the linear system of equations (3.3) and 5 is the

pseudoinverse of 0.

In this result the control u is the sum of three terms, a dynamic feedback

w 1 , a causal (non-anticipatory) function w2 of the inputs b, f, g, Y, and

a open loop term w3 which depends on f, Y and the constants c and c,

i.e., on some knowledge of g on the whole interval [-r,T-r]. For the

implementation of such a control law it is assumed that the observations rh

are available for feedback. The system diagram with such a control

strategy implemented is as follows.

Figure 2

One should note for finite dimensional state-space systems that S = [0,T],

and w2 = 0. A simple example illustrating LOP I is presented after we

take up an alternate form of the component problem.

Next we consider a local optimization problem with the standard

quadratic cost functional If Tlu' 2 dt if T ly-Y 2 dt.

ll



Local Optimization Problem II. (LOP II)

Minimize on GuXGH: J(u,h) = jN (u) + 'N (C(y-Y))

Subject to: h = f Bh *g * u

h (T) = b (T)

[Dh](T) c

y =T

given that [Ag](T) c and DAg 0 where A =

(I-B1-8*(I-B) TrC 1) and Bh = B*h-K(,T)[B*h](O).

In this problem we must restrict attention to finite dimensional, state

space systems. Let B = mC with a a linear transformation on X. With this

restriction B as defined above is in B, hence (I-B) exists, and we may

again use the Lagrange Multiplier Theorem to characterize the optimal

trajectory and control.

In order that (u,h) in G uxG H solve this problem it is necessary that

there exist multipliers X in GH and U, v in X such that QH(au,u)

QH(Cr'h,C(rh-Y)) + QH(Sh-Bdh-0u,X) * <[Sh](T),ui> <[D6h](T),v> =

QH Cu 6*X,Su) + QH(T*C*C(Th-Y)(I-B)*x K( ,T) D*K( ,T)v,6h) = 0 for all

(u,ah) in G uxG H' Consequently, u = (I-P 0 )0 1 and VrC*C(rh-Y) * 0i-

B)*X * K( ,T)u D*K( ,T)v 0. One obtains, eliminating U form the

above equation I *C2(Th-Y) B*% + K(,T)X(O) - K( ,T)[B*1](0)

SK( ,T)[D*K( ,T)v](0) - D*K( ,T)v. Thus ) = (I-B) -1 (K-C-(Th-Y)

KC ,T)X(O) + KC ,T)(D*k( ,0]v]CO) -D*K( ,T)v) and

(I-P0) =(I-B)'1r*C (rh-Y) l-P0)(I-B)-'(K( ,T)X(0) (3.6)

KC ,T)(D*K( ,T)v](O)- D*K( ,T)v).

It follows that

12



h = Af-AG-A *(l..Byi *C-Y*A5$*(I-P 0 )(1 - B) (KC ,T)X(O)

- K( ,T)[D*K( ,T)v](O)-D*K( ,T)v}
= Af Ag - A*(l-B) I*C-Y k1 1  ,X(O)) k12(,v) (3.7)

and

1 21

u = 1*(-B) r*C (h-Y) k13(,X(O)) + k14 (,v) (3.8)

where

k13(t,x):[CI-P 0 )(1-B ) '1 K C ,T)x](t)
kl4(t,v1:[O*(l-P 0 ) (1- B )- 1 K( ,T)[D*K( ,T)v](0)-D)*K(,T)0}](t)

14-1

k 1 (t,X)=:ABk 13( ,v)](t)
i - ~ kl(t,v):[Aak4( ,V)]1(t).

For fixed t, k 1 1 (t, X), k 13 (t,X) are linear in I and k 12 (t,v), k14 (t,v) are

linear in v. The remaining constraints yield the following linear system of

equations for X(O) and v:

b(T) : [Af](T) +c - [AA*(I-B) Ir*C Y](T) - k11(T,X(0)) k 12 (T,v)

(3.9)

c = [DAf](T) - [DA88*(I-B)'r*C-Y](T) - [Dk11 ,X(0))+k12 ,v )}](T )

Again the rationale for the conditions [Ag](T) = c and DAg = 0 becomes

apparent.

THEOREM 2.4. The pair (u,h) in GUxGH solves LOP II if and only if u

and h are as given in equations (3.7), (3.8) and X(O), v satisfy equations

... (3.9).
.4

Here the optimal control is made up of two terms: a dynamic feedback of

the difference between the system observation and the desired trajectory

and an open loop term depending upon the input f and the coordination

13



parameters c, c. The structure of the solution is depicted in the following

diagram.

Figure 3

To illustrate the significance of LOP I and LOP I, we consider two

examples.

Example 3.1 The problem is to steer the solution of the scalar

equation h'(t) = h(t-1) + gl(t) + v(t), t_>0 with initial position h(t) = 1 for

-1:St<0 to the terminal position h(t) = 0 for 1:tS2. We assume limited

information about g. The system may be written as h = f g Bh * u

or h = A(fgu) with f(t) = 1 for -1<_t-_2, g = Cg 1 and u Cv. Here A =

t
(I-B) - with [Bh](t) = 0 for -1:5t<0 and [Bh](t) = I h(r-1)dt for 0- tS2.

We assume [(I-C2)I1 Ag](1) = c. A solution is obtained by setting D = 0,

b = 0, y = h and choosing an appropriate Y in LOP I. -We obtain

f M) -1_<0

[Af] (t) = f(t)4-tf(c-l)dc 1st<2

f (t) *If(rld~Pt(-~~-)t01-I

[A' 1 f](t) = f(t) - [Bf](t) -1St_2

0 -1st<0

[ C (t-t))h( =)d- 0st:SZ

tt

if(t) -s~

I [(l-C2 ) if](t) =

f(t) * sinht-,0f(-)d- 0<-t:2I0
and the optimal trajectory and control can be determined from equations

14



(3.3), (3.4), and (3.5).

Example 3.2 Let B = C and consider the problem of steering the scalar

system h(t) = t [Bh](t) * 2u(t) for 0:5t_-2 from h(O) = 0 to h(2) = 1

subject to the constraint [Dh](T) = (1/2)1 2 h(t)dt = 0. Setting g = 0 and

- y = 'h and choosing an appropriate Y, LOP 11 may be used to solve this

problem. One obtains, using Laplace transforms,

,( -B)-th](t) - Ite-(t- )

[Ah](t) = h(t) f [V2sinhV%2(t-T)coshV2(t-')]h(r)d

[D*K( ,T)v](t) = [DK( ,t)v](T) = (l1t-t2/4)v

and the optimal trajectory and control are determined from equations (3.7),

(3.8), and (3.9).

These examples are indicative of the use of LOP I and LOP II. Frequently

Laplace transforms may be used to determine system operators. In more

general problems, our Hilbert space setting aids in the representation and

approximation of system operators [2],[12].

4. A Decentralized Control Strategy. We will present a decentralized

control strategy, a scheme for coordinating local control decisions, for

large scale systems in which component interactions are suitably limited.

First, consider the two component control system

h = fl I B1hl I C2 h2 + 15U1

h2 = f2 + Clh1 + B2h2 2 u2

where the B's and C's are from B. We can diagram the system as follows:

Figure 4
| i.
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where A.i(-B.) - for i = 1, 2.

We define two components to be stably connected provided for all g in

PoGH the condition Ci(I-C2)- A iCj g = 0 holds for (i,j} = (1,2). Large
0 H,

scale systems composed of several components, each pair of which is stably

connected, will be referred to as stably connected systems. Local control

laws for stably connected systems can be coordinated by imposing side

conditions as in the previous section and exchanging that information

among the component controllers.

For a stably connected two component system, consider the problem of

local controllers choosing controls u1 and u2 , respectively, on the interval

O<t T which steer h 1 and h2 to zero over the interval T-r<tT, i.e. LOP I

with b = Y =0 and A = 1 1. We are led to the following control

coordination strategy.

Coordination Strategy: Let (i,j} = (1,21. Given elements c1 and c

from X and fl and f 2 in GH the ith controller solves LOP I with A = Ai , g

= Cjhj, D = D i = (I-C 2 ) 1 AjCi, c =c i , and c = c.

In this strategy the condition [(I-C2) -  C2h2](T-r) = c2 represents

the information that the first controller must have about the second

component in order that the local optimization problem can be solved. This

condition becomes a constraint on the second component. Similarly, the

2condition [(I-C 2)-1A2CIh](T-r) = c1 becomes a constraint on the first

component. The stably connected assumption implies that Di(I-C) Aig

0 for each component and, hence, each controller can solve its local

optimization problem.

The stably connected condition can be given a geometric

interpretation in specific cases. If C. = 0 for i 1 or 2 then the

16
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components are stably connected and there is a hierarchical relation

between the components. If C. commutes with (i-C2)_ for i = 1 and 2 on

PoGH then the stably connected condition is equivalent to the condition

C.A.C. = 0 for (i,j} = (1,2}. If the latter condition is not satisfied , one

could argue that the input-output operator for the first component should
-1

be (-A 1 C2 AI C) IA rather than A1 . Similarly for the second component.

For the examples considered in this paper C. = aC with r>0 or r=0, where

a is a dxd matrix, in either case C. commutes with (l-C 2 ) - 1 on P0GH For

finite dimensional state space systems i.e., r = 0 and B1 = a1 1 C, C2 =
a 1 2 C, C1 = a 2 1 C, and B2 = ' 2 2 C with the a ij matrices of appropriate

dimensions the two components will be stably connected if and only if the

controllability subspace determined by (aii,; a) is a subspace of the null

space of a.. for (i,j} = (1,2).

Other combinations of LOP I or LOP II can be used as the basis for

defining a coordination strategy. In any such strategy, if D. denotes the

operator appearing in the additional component constraint then we must

extend the definition of stably connected components to mean D 1 D2 = D2 D1

- 0. Frequently the components form a hierarchy in which D 1  0 or D =

0 and this condition is automatically satisfied.

' Example 4.1 Consider the decentralized control problem of steering the

two component system

hl,(t) = hl(t-1) h2 (t) V I

h2 'Ct) = h 2 (t) + v 2

S. * from hl(t) = 1 for -l~t-0 to h 1 (t) 0 for 1<_t 2 and h2 (0) = 0 to h (2) =

1. With notation as in Examples 3.1 and 3.2 the system may be written as

h= f * B h1  Ch 2  u 1

%;." h.= B.,h, +  u .
h2  B2 h2 . 2 .

17
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Clearly the components form a hierarchy. The following coordination

strategy is suggested: the controller for the first component uses LOP 1,

as in Example 3.1 with Sg Ch 2 , to determine uIwhile the second

controller uses LOP 11, as in Example 3.2 with D = (l-C 2)_ AV, to

determine u 2

The implementation of our coordination strategies for a two component

system requires that appropriate values for the parameters c 1 and c,2 be

available. These parameters are referred to as coordination parameters

and the problem of determining values for these parameters leads to a

higher level coordination problem.

A coordinating strategy can be developed for any stably connected

system. A rich class of such systems are those which can be thought of

as hierarchies. A canonical example is a multi-component system with

signal diagram of the following form

Figure 5

Clearly each pair of components is stably connected and we can envision a

command structure where the controller for the first component sets the

coordination parameters and, hence, the side conditions for the other two

components, i.e., specifies the values of [(l-C-) A C h2 1(T) and [(I-

C-) A IC 3 h 3 1(T) if LOP I is used. More generally, we can consider a

grid network of the form

Figure 6

provided the system is stably connected. The side conditions, using LOP

18



I, would have the following form.

On the first component: [(l-C2) -A 2 CIh1 ](T) = c1

. On the second component: [(I-C) A 1 C 2 1 h 2 (T) =

and [(I-C2) 1A3 C23h 2 ](T) = c23

On the third component: [(I-C 2) 1A2 C3 h3 ] (T) = c3.

Physical limitations on component interactions can yield stably

connected systems or decomposition methods may be used to transform a

model into a stably connected system. We now present a basic

decomposition procedure for finite dimensional systems of the form h(t) =

f(t) + lth(s)ds 11 u1 
+ a u2 where r = 0 and a is a dxd matrix and a

is a dxn. matrix for i = 1,2. See [11] for examples of this decomposition

and related coordination problems. For i=1,2 let 11. denote the projection

of X onto the controllability subspace spanned by the columns of the

matrix Ui,, ... ,a- 1 i} and 113 a projection of X onto i1 X n IE2 X.

Assume X = IT X + IT2X and recall that the identity may be written as I

]I,+ 1T2 - 13.

We want a decomposition of the system in terms of the IT's to which

we can apply our distributed control strategy. For 0: m0 , mi, m2 :-1, let

f1 = (111-m o3)f f2 = (IT2 -(-m 0 )1T3 )f

and
a (IT -: : m2I3:I

.[1.: 1 (111 Y-m l 13):12 2 "3-T 2

a21 : min3 a' 1  a22 = (IT2 "m2 3)a112 "

Furthermore, let B1 = C 1 1 C, C1 = &2 1 C, B2 = a22' C2 = a12 C. Our

decomposition has the form

h= fl B1 h 1  C2 h 2 + 1 uI

S2= f 2  Clhl + B2 h 2  + 02 u2 "

It follows, using the invariance properties of the controllability subspaces,

19
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that
h 2 = fl f2 (=ll a2 1 )I hldt (a 1 2 2 2 )1th 2 dt alUl .U ,

=f +~ fl.1t fh dt + T allI t h dt + a *+

= f li 0 ] 1hd 2 ~2 0 2 1

=f + (-1 3af h dt 11 th dt 5U
Sdtt

"" (1 2 -1 1 ).hd,.TJ M1 ) h dt -tL 3tf h 2 dt + lUl +2u2

: f + (11 +I 2 -1l 3 ).t(hl1 h2)dt + 0 U1 + au .

Thus h = h1 
+ h 2 and the decomposition can be diagramed as follows:

Figure 7

: -1
where A. = (I-B) i=1,2., •

The system will be stably connected provided C1 A1 C2 = C2 A2 C1 =0.
Here C2 A2 C1  = ml3=It1 ('- (I 2 -m2 3) a1 2 C) - m2Tl3 2C  and a similar

expression holds for C1A1 C2 .

We consider three cases i) ] 1 X n 2 X = (01; ii) 112 X SH 1X; and iii)

111XAX, 112 X X, lI1X r)112 X-(0}. If y = (I-( 2 -m2 T3 )1t 2 C) '1m 213 al 2 x then

the invariance properties of the controllability subspaces imply that lI1 CY =

I13Cy. Consquently, the stably connected condition is satisfied for all

.choices of m1 and m2 whenever 113=a1 3 = 0. In the first case 113 = 0 and

there is no interaction between the components. In the second case 13 =

n 2 and the situation seems to be most interesting when IT3=113 A 0. In this

case the stably connected condition can be met by choosing either m I or

.2 to be zero forming a "hierarchical" system. Finally, the third case is

mixed since 113=T13 might or might not be zero. When 13a]3 = 0 and mIm 2 A

% 0 note that the system is not a hierarchy and the components interact.

-: 5. Concluding Remarks. If one views the system components as basic

20
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building blocks then our coordination strategy for stably connected

S systems may be viewed as a rule for putting together more complex

structured systems. From this point of view the open and closed loop

control laws arising from the local optimization problems determine

4. additional components to be "hardwired" into the system.

4 - - To implement such a control strategy one may envision a coordinator

* who acts or may act on the system by setting the component objective:

trajectories, or side conditions necessary for coordination, terminal

constraints, desired trajectories, or side condition necessary for

coordination. Such a coordinator may use centralized knowledge of the

performance of each component to set coordination parameters. Realisticly,

4. only limited information on component performance would be available to the

coordinator. Another possibility is that a command structure is imposed

among the the system components for the choice of component objectives

and the passage of information. There are many possibilities. However,

- the basic idea is that in any such structure there is a predetermined order

in which component objectives are to be set. Certain components may be

free to set their own objectives while other components would have extra

45' side conditions added to their requirements.
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ABSTRACT with [Ch](t) - Jh(T)dT an( a, B, Y1 , Y2 , denote

A control strategy, which allows some level of matrices of appropriate dimension. Here u
autonomous component control, for large scale denotes the component control, f denotes a known
systems is presented. The approach requires that disturbance and gl, g2 denote the effect of other
component interactions be suitably limited so components upon the given component. Let A -

that variational methods can be used to determine (I-B)
-

l denote the component input-output
component controls. operator.

INTRODUCTION We consider the problem of steering h(t) from
h(O) - f(O) to a desired terminal condition h(T)

Decentralized control problems for large scale - b. Let c, c denote fixed parameters and let D
finite dimensional linear systems are considered. denote a linear operator defined on the
For systems with two controllers we consider the lying function space. The typical form of a
problem of independently choosing controls to component optimization problem is as follows:
steer component responses to desired terminal
conditions. It is shown that some level of rTY 2 
autonomous component control is possible when Minimize: J(u,h) 0 + (u) dt

additional constraints are placed upon the Subject to: h(t) - f(t) + [Bh](t) + Bu(t) + g 1 (t)
component requirements and exchanges of related h(T) - b
information between components is allowed. The [Dh3(T) - c
ability to coordinate locally designed control y(t) - Y h(t) " -t
laws depends on the level of interaction between 1 2g2
system components. given A(g1 +BY2g2J(T) c and D(A(g gy )

Our methods may be referred to as multi-level or where operators A and B are defined by
hierarchical, (1), (2), in the sense that I) the A-I - -- 

2 
and

system must be decomposed into local components, 1 -

ii) local models are used in the design of [Bh](t) -B'h)(t) - K(tT)[B'h](O).

component control laws, iii) a higher level

coordination problem is introduced. Typically In this problem an interval constraint has been

multi-level methods involve off line iterative placed upon h, Y denotes a desired response, and

calculations and result in open loop controls. K(s,t) - k(min(s,t))I with I the identity and

In our appraoch coordination of component k(t) - 1+t. The conditions [A(g 1 +BY 2 g 2 )](T) - -

controls is achieved in one step by the imposi- and DLA(g+1 4Y2g2 )) - 0 summarize information

tion of additional constraints on the system about g, and g 2 that allow the controller to

components and closed loop control laws are solve this optimization problem. These condi-

obtained. The choice of appropriate values for tions will become added constraints on the compo-

parameters appearing in these added constraints nents which determine g, and g2. For a imilar

leads to a higher level coordination problem, reason the constraint [Dh](T) - c is included in
the above problem. For certain hierarchical

Crelations between system components the condition
*-, COMPONENT CONTROL PROBLEM D(A(g 1+BY2g 2 )) - 0 is naturally satisfied.

Our methods require that components modelled by
%differential equations be written in integrated The local control problem can be reformulated as

form as h(t) - f(t) - [Bh](t) + Su(t) + g1 (t) and a constrained optimization proolem in a reproduc-

y(t) - Y1h(t) + Y2g2 (t), where [Bh](t) = a[Chl(t). ing kernel Hilbert space of functions. The inner
product in this space is essentially defined by

" ig <f(0),g(O0)> fTI t

<f J (),g (t)>dt.
Office of Scientific Research under Grant Lagrange multiplier methods (3), yield the

AFOSR-84-0236. optimal control
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-1 2 2 [Dh2J(T) - [A1 (C21h2.B1y2h2J(T) - C.
u(t) = [8((-B)- 1C2(T1 h zg 2-Y22 (t)l

+ k (t.A) + k (t v) For example, to steer h, from h1 (O)-O to h 1 (T)-b
1 2 and h2 from h2 (O)-O to h2 (T)-b 2 , the component

where the open loop terms are defined by optimization problems would be

k1(tA) - [8'(I-P 0 )(IE) 1KC T)AI(t) I. Minimize: %fT (eh+'y2h2-Y,)dt + 41T. (t) 2dt

k 2 v(tV) - [B*(I-P 0 )(I-B) K( ,T)[D*K( ,T)v](O) Subject to: h1 
l B 1 hI + C21h2 + 1

- D*K( T)v}](t). h (T) - b1
With this control strategy implemented the system y - Y hi + Y' h
response is gie -1 2 2..

given [AI(C 2 1 -BIy 2 )h 2](T) - c,

h(t) - AfA(g1+BY2 92 )-AB YgY (k1( ,A)+k 2 ( 2 fl. 1I. Minimize: %fT CYh 2 -Y2 )2dt + %J'u2 (t)
2dt

and the multipliers A, v are solutions of the Subject to: h 2 - B2 h2 + 62u2
equations 2 2T)i; ~ h(T) -b 2

b - [Af](T) c-[A8Y](T) [A8k ( A)+k(,v)}](T) 2, - b2h (
1 k2( [A1 (C 1 + B y )h I(T) - c

C - [DAf](T)-[DABY](T)+[DAB(k ,A)+k 2( v)}](T). Y2 " Y3h2"

Here [(I-Po)f](t) - f(t) - f(O) and [B*h](t) - Note that each local control problem can be
c'E[K(t,T)h(T) - K(t,O)h(O) - [Ch](t). In the solved independently provided that the operator
scalar case [D*K( ,T)v](t) - [DK(,t)v](T) and in A1 (C2 1-BIY 2 ) and the value of c is known to each
the vector case (D*K( ,T)v](t) is determined by controller. The choice of appropriate values for
<D*K( ,T)v](t), ej> - <[DK( ,t)ej3(T),v>. this coordination parameter leads to a higher
, -% level coordination problem.

For low order systems all operators arising in

the component control problem can be obtained This example illustrates our approach to
using Laplace transform methods. Higher order decentralized control and control coordination
systems require numerical approximations to these for large scale systems. In the scalar case,
operators. Theoretical verification of the operators which appear in this coordination
existence and uniqueness of solutions to local strategy have the following representation
control problems of the above form is the subject
of a forthcoming paper (4). Bh(t) -(th(O) - [Ch](t))

COYTROL COORDINATION [(I-B)-1h](t) - (1-e- t)h(O) + h(t)

As an example of our coordination strategy we - a Je' tT)h()d
consider the following two component system 2

[C2 h)(t) - J(t-r)h(r)dT
82 A h y0

Xz 2 [Bh](t)- (1/ai) J(

2and A is the input output operator with transfer
function (s2 +as)/(s 2-(, 2 +B2 y2 ). These formula
can be used to simulate our coordination strategy

u1 Y for two component systems as diagrammed.
61 A h, YL
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The first controller solves the local control Automat. Contr., AC-23 (1978), pp. 108-128.
problem with g1-C2 1h2 , g2-T2 h2 ,,and D - O. This (3) D. G. Luenberger, Optimization by Vector

• '" strategy forces the constraint A1 (C2 1h2 +BY 2h2 ] Space Methods, John Wiley and Sons, New

(T) - 6 on the second component. Also, the York, 1969.

second controller can obtain a control to meet (4) J. A. Reneke and R. E. Fennell, Decentral-

* the desired objective by solving the local con- ized control for large scale hereditary
trol problem with g, g2 = 0 and the constraint systems, submitted for publication.
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RKH SPACE METHODS FOR APPROXIMATING THE COVARIANCE KERNELS
OF A CLASS OF STOCHASTIC LINEAR HEREDITARY SYSTEMS, II

James A. Renekel
Clemson University

Clemson, South Carolina

Roland B. Minton
Virginia Polytechnic Institute and State University

Blacksburg, Virginia

Reproducing kernel Hilbert space methods have produced
useful approximations for estimation and control
problems of deterministic linear hereditary systems.
By obtaining explicit Parzen type RKH space
representations of stochastic processes governed by
linear hereditary systems as spaces of Hellinger
integrable functions these same approximation methods
apply to the problem of finding the covariance kernel
given the model. Some sample calculations will be
presented.

Sf. INTRODUCTION

A convenient summary of the inner product space geometry of second order
stochastic processes can be found in [3, Chapter 2]. Our concern is with the
covariance kernel of such a process, the reproducing kernel of a Hilbert space
representation of the process [5]. A recent collection of papers [9] covering
the last two decades illustrates the utility of RKN space methods for
computing various functionals of a process related to problems of estimation
and detection.

The covariance kernel also plays a central role in the design of controls for
linear finite dimensional state space systems [8]. In this work the diagonal of
the kernel function, the variance of the system response to a general noise
process, is most important and can be found by solving a matrix Riccati equation.
However, for hereditary systems, systems modelled by delay differential equations
for instance, the covariance kernel has not been so useful. One difficulty is
that infinite dimensional state space methods lead to an operator Riccati equation
for the variance of the states [2] rather than the variance of the process.

The approach of this paper to the problem of estimating the covariance kernel
of the response of an hereditary system to a general noise process input is in the
spirit of Parzen's original idea. We extend the method presented in [7] for
scalar systems to obtain an explicit description of the reproducing kernel Hilbert
space representing the process as a space of Hellinger integrable functions [C4].
Convergence of a class of finite dimensional approximations to the covariance
kernel is obtained using the approximation theory developed in [6].

-'-5-

-L4



SOME BACKGROUND NOTATION

We are concerned with second order processes fX(t), t in S1 with values in
Rd , i.e., the components of the dxd matrix E(X(t)X'(t)) are finite for each t.

Let <.,-> denote the usual inner product for Rd and I- Ithe inner product norm.

Parzen's covariance kernel R is defined by R(s,t) = E(X(s)X'(t)), for each s
n

and t in S. One has immediately that E <C ,R(s ,s )c > > 0 for each sequence
p ,q=O p p q q-

in Rpda Aronszajn's classic result CI] tells usp~po .0 S n eune{p p=O

that there is a complete Hilbert space G for which R is a reproducing kernel,
i.e., denoting the inner product by Q(-,.) we have

i) R( ,t)c is in G for each t in S and c in Rd and

ii) Q(f, R( ,t)c) = <f(t),c> for each f in G, t in S, and c in Rd.

It is appropriate to think of {G,Q} as a representation of {X(t), t in S1

since, for each c in Rd, the function *c from L2 (X(t),t in S) into {G,Q}

defined by Wc(u) - E(Xu')c maps X(t) to R( ,t)c, for each t in S. However,
obtaining {G,Q} explicitly is basic to making use of this representation of
the process.

Consider for instance the process given by the real valued stochastic
differential equation dX = aX(t)dt + dW where W is the standard Wiener

process. The covariance kernel for {X(t), t > 01 is given by R(s,t) =

(1/a)exp(t max(t,s)). sinh(a min(t,s)), for s-t in S = [0,-). The
corresponding RKH space G is the space of all functions f which are 0 at 0,
absolutely continuous on compact subintervals of S, and such that

fI f' (t) - af(t) 2 dt < -. The inner product Q is given by

Q(f,g) = J(f'(t) - af(t)(g'(t) - ag(t))dt for each f and g in G.

This elementary result can be generalized to include delay systems.
However, Parzen's ideas apply to more complicated systems which we will
attempt to encompass by introducing an abstract formulation. Assume S -

[-r,-) where r > 0 and k is an increasing function from S to the numbers with
k(-r)=O. Let G0 denote the space of continuous Rd valued functions on S and

GH the subset of Go to which f belongs only in case f(-r) = 0 and f is

Hellinger integrable with respect to k on compact subintervals of S [4,6],

i.e., for each compact subinterval [u,v] of S there is a number b such that

df 12/dk - Zpm1 1 f(sp)-f(sp_1 ) 1'/(k(s )-k(s 1 )) ( b for each partition

[ I M. of [u,v]. The Hellinger integral fvj df 12/dk is the least

p p= 0 dfu ,ki h es

such number b.

Note that elements of GH are absolutely continuous on compact subintervals of

of S. Furthermore, if each of f and g is in GH and [u,v] is a compact subinterval

[,
,[.~. . .- . * .



then the integral J <df,dg>/dk exists as a limit through refinement of partitions
Um

of [u,v] of approximating sums of the form E <df,dg>/dk - E <f(s )-f(s )'
3 p.i p p-1

g(sp )-g(s p-1 )>/(k(s pl-k(Sp- 1) "

For each u in S and f in Go let N u(f) l.u.b.1 f(x) and
x < U

Sf(x) x < u
'"[P flx= f(u) u < x.

Let denote the class of linear transformations of Go to which B belongs
only in case

i) [Bf](u) - 0 for each f in Go and u < 0 and

ii) for each compact subinterval So of S there is a number c such that

[Bf](v) - [Bf](u) j < c JvNx(f)dk(x), for each f in Go and subinterval [u,v] of

So.
Note that the formal integral operator

• 0 u < 0

u Jf(s)dk(s) + u f(s-r)dk(s) 0 < S,

0 0

where a and are dxd matrices, restricted to Go is in B.

Let A denote the space of linear transformations of Go to which A belongs
only in case A - I is in B, where I also denotes the identity transformation on G o .

If B is in B then I-B is a reversible function from Go onto Go and (I-B)-1 is in A.

If A is inA then A is a reversible function from Go onto Go and I-A - 1 is in B.

Consider the processx~ ) -z (t)  t < 0

Z(t) - [BX](t) 0 < t

I - [AZ](t)
where B is in B, A (I-B)- 1 , and Z is a mean-zero process in Rd with independent

increments, and E(dZ(dZ)') . (dk)I, I the dxd identity. We assume that Z(-r) = 0.
* In the next section we want to obtain explicitly an RKH space which represents the

process IX(t), t in S1 in the sense of Parzen.

'p"%
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AN RKH SPACE PARAMETERIZATION OF R.

We begin with a generalization of the earlier elementary result for the pro-

cess given by X(t) W(t) + X(s)ds. Let G denote the subset of GH to which f

belongs only in case or ldf 12/dk < - and Q the inner product for G. given

-. by Q.(f,g) = fwr<df,dg>/dk. Recall that elements of GH are 0 at -r.

Theorem. If R( ,t)c is in GH for each t in S and c in Rd then the process

{X(t), t in Si given above can be represented in the sense of Parzen by the RKH

space {G,QI where

1.. 1) G is the subspace of GH to which f belongs only in case (I-B)f is in G and

2) Q is the inner product for G given by Q(f,g) = Q ((I-B)f, (I-B)g) for each

(f,g) in GxG.

.-a-.Indication of Proof. As an indication that everything works, notice

thatthere is a function M from S S to the d d matrices such that X(t) =

LAZ)(t) = ftM(t,s)dZ(s) for each t in S and

0 if t < u < v
ErdZ(u,v)([AZ](t))f)

J%.'(t,s)dk(s) if u < v < t.

Also if s < t and c in Rd then

[(I-B)R( ,s)c](t) - [(I-B)E(X(-) X'(s)Jc](t)

[E(Z(-) X,(s))c](t)

[E(Z(.) X'(S)Jc](s)

= [(I-B)R( ,s)c](s)

* 4 d
i.e., (I-B)R( ,s)c is in G or R( ,s)c is in G for all s in S and c in R

Furthermore, if c I and c 2 are d-vectors,

<c R(st)c 2> = <c1 X(s)X(t))c2>

= (ci E(f r M(s,u)dZ(u))(f t r M(t,v)dZ(v))')c 2>

= <cI' TSrM(su)M'(tu)dk(u)c2>

_ _ = s <M,(s,u)c ,M'(t,u)c >dk(u)

.'. - r 2



= SLr<dE(Z(-)X'(s))cidE(Z(.)X'(t))c >/dk

- Q.(CI-B)R( ,s)cl, (I-B)R( ,t)c2 )

Q(R( s)c 1 , R(,t)c 2 ).

Let K denote the function from SxS to the dxd matrices given by
Sk(s + r)I S < t

-; K(s,t) -
1t k(t + r)I t < s.

Note that K is the reproducing kernel for {G.,Q }.

Theorem. For s < t, R(s,t) = [A(PtA)*K( ,t)](s).

Proof. Since PtA is a continuous linear transformationof {G.,Q.}, we have

the adjoint (PtA)* exists. Also AK( ,s) is in G for each s in S. Hence, for

arbitrary d-vectors cI and c2 and s < t in S,

<[AK( ,s)](t)c1,c2> . Q(AK( ,s)ci , R( ,t)c2 )

= itr<dK( ,s)cI ,d(I-B)R( ,t)c2>/dk

= <c,[(I-B)R( .t)](S)c2>

On the other hand,

<[AK( ,s)](t)ci,c 2> = Q.(AK( ,s)ci , K( ,t)c2 )

SQ.(K( ,s)cl, (PtA)* K( ,t)c2)

- <c1I,[(PtA)* K( t)](s)ca>

Since c I and c2 are arbitrary, Ps(I-B) R( ,t) - Ps(PtA)* K( ,t). But then

PsAPs(I-B)R( ,t) - PsR( ,t) - PsA(ptA)* K( ,t) or R(s,t)

CA(PtA)* K( ,t)](s).

We might note this can also be written <R(s,t)c I c2> Q (K( ,s)c, A(P tA)*-

K( ,t)c2) - Q.((PA)*K( ,s)cl, (PtA)* K( ,t)c2). If we introduce the matrix L

defined by L(s,t) - [(PtA)* K( ,t)](z) - [Pt (PtA)* K( ,t)](s), then L(s,t) -

L(t,t) when s > t, L( ,t)ci is in G for i=1,2, and <R(s,t)c I,c2>

Q(L( ,s)cI, L( ,t)c2).



NUMERICAL METHODS.

For the purpose of illustration assume that everything is scalar
valued, i.e., d - 1, and k- I the identity on S. Computing [diag R](t), for
a given t, splits into two parts. We are concerned first with function

evaluations L(s,t) = [AK( ,s)](t) and then with

the integral Q.(L( ,t),L( ,t)) = tr IdL( ,t) 12/dI. Working backward, observe

that the approximating sums En JL~ s ,t) - L.(st) 1'/(s -s ) for thep=l ] (p t  - (p-i't p/(p-il o h

intergral are nondecreasing with respect to refinement [4].

If s -s = 6 > 0 for p = 1, 2, ... , n, E is a positive number, and L( ,t)
p p-i

is an approximation for L( ,t) such that I L(s ,t) - L(s ,t) I < E for p =

p p

1,2,...,n, then I n .1 L(spt) - L(sp ,t) I 2/6 - n I L(sp' t) -

L(s p 1 t) I 2/6 1 < 4E[2Nt(L( ,t)+e]/6.

Thus, assuming the operator A is given formally by an integro-differential

equation, we can compute for a fixed partition {s p of [-r,t] the

approximating sum Z. JdL( ,t) 12/dI to any desired accuracy. By refining

in turn the partitions s we obtain [diag R](t).

- The method was implemented for the class of scalar systems of the form

h(t) = f(t) + afth(u)du + ft h(u-r )du + Yth(u-r)du.

Experiments with t = 2, r, - 1/2, r 2 = 1, and various values of a, a, and Y, -2 <
a, 8, Y < 2, the algorithm always converged with err - 0.001, i.e., halving the
step size for the function evaluation and the integral quadrature produced no
change in in the first four decimals of [diag R](t).

CONCL.US IONS

RK( space methods lead to an explicit representation of the convariance
kernel for a process governed by an integro-differential equation in terms of

solutions that can be obtained by standard numerical methods. Although the
presentation of these methods for the sake of clarity was in terms of scalar

systems, the methods are readily extended to finite dimensional vector systems.

The relative straightforward nature of these methods leads one to anticipate their
incorporation into a general methodology for system identification and control
design 'or hereditary systems.-.

Si .
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Abstract. Geometric, algebraic, and graph theoretic prdperties of system

matrices are presented which allow some autonomy in the choice of component

control laws for large scale systems. The results are based upon a

decentralized control strategy for two component systems which requires that

component control laws be of a specified form, that an additional constraint be

placed upon component control requirements, and that component interactions be

suitably limited.
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CANONICAL FORMS FOR DECEITRALIZED CONTROL

Robert E. Fennell

I. INTRODUCTION

Decentralized control problems for finite dimensional state space systems

with two independent controllers are considered. Systems of the form

dhl/dt - all hl + a12 h 2 + UI u

dh2 /dt - a2 hl + a22 h 2 
+ 62 U2II and

dx/dt - F x + GI u 1 + G2 u2  (2)

where all, a12, a21, a22, $I, 82, F, GI, G2 denote matrices of appropriate

dimension will be considered. Independent control cannat be achieved without

some restriction upon the interaction between system components. The objective

of this paper is to characterize geometric and algebraic conditions which allow

some autonomy in the choice of controls for systems of the form (1) or (2).

In Section II, a general decentralized control strategy is presented for

systems of the form (1). The approach requires that each component control law

be the sum of a feedback term and an open loop term, that an additional.4

constraint be added to the component control requirements, and that component

interactions be suitably limited. This control strategy is adapted from

previous efforts, Reneke (1984), in which variational methods were used to show

that some level of autonomous component control is possible when additional

contraints are placed upon component requirements and exchanges of related

information is allowed. -The approach may be referred to as multi-level or

hierachial, see Sandell et al. (1978) and Findeisen et al. (1980), in the sense

that local models are used in the design of component control laws and a higher

level coordination problem is introduced.
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The decentralized control strategy to be introduced applies when the

interaction between components in (I) is suitably limited, i.e., the components

are stably connected. In Section IT, this condition is characterized in terms

of geometric properties of the matrices all, a12, a21, and a2 2.

For systems of the form (2) controllability subspaces, see Wonham (1985

(1), or strong components, see SilJak (1978) or Michel et al. (1978), may be

used to decompose control problems into problems for two component systems of

the form (1). In Section III such a decomposition is presented and the stably

connected condition is characterized in this case. In the final section,

interconnected hierachies of the form (1) are considered. That is a11 and a22

are assumed to be block lower triangular and a graph theoretic characterization

of the stably connected condition is presented.

II. A DECENTRALIZED CONTROL STRATEGY

Let (1) be written in integrated form as

hl - f + B1 hl + C2 h2 + v1 (1.1)

h2 - f 2 
+ C1 h2 + 82 h2 + v2 (1.2)

-
j where Bih - aiiCh, Cih - ajiCh, vi - Cui with [Ch](t) - f0h(T)dT and fi(t)-hi(O)

for {i,JI-{1,21. For simplicity, it is assumed that Bi-Ii the identity

transformation for i-1,2. Henceforth whenever indicies i or j appear in a

statement it is to be assumed that {i,J}-{1,2}. Preliminary calculations show

that EC2h](t) - ft(t-)h( )dT and, using Laplace transforms that

* [(I-C2 )-lh](t)- h(t) + ftsinh(t-x)h(x)d. Of course the underlying function

-C,.""i ;" . .. .. ;



space must be restricted so that this inverse operator exists. Similarly, ift

[Aiv](t) - foexp(aii(t-))v(T)dT then Al - (I-Bi)- and Ai- 1 - I-Bi .

The control problem is to choose V1 , v2 independently to steer the

components from a given position hi(O) - hi0 to a desired terminal position

hi(T) - hiT for 1-1,2.

Our decentralized control strategy, which allows some autonomy in the choiceI of ccmponent controls, requires that for a given parameter ci the constraint

[(I-C 2 )-'Ajcihi](T) - ci (3.1)

be added to the ith control requirements, that component interactions be limited

. so that

(I-C2)-IAjCi(l-C2)-lAiCj -0, (4.1)

and that the control law for the ith component be of the form

vi(t) - 1AC2(hi-Yi)+Ai'1{kJi1 ( ,XiI)ki2( ,v)](t) (5.i)

* where Yi denotes a desired trajectory for the response hi, the functions

kit(t,X) and ki2 (t,v) are linear in the parameters Xi, vi respectivley, and Xi,

vi satisfy

hiT _ [(I-C2)- !{Aif i+cj-C2Y i+ki1 ( ,X)+ki2( ,v)](T)

. (6. i)

C - CDi(I-c 2 )-1{Aifi-C 2Yi+ki1( ,X) k 2 ( ,v)}](T)

with Di - (I-C2 )-IAjC i .

ThEOREM 1. If the ccntrol law (5.1) is used in component (1.1) and condition

(4.j) holds then the resmonse h; satisfies hi(O) - hio , hi(T) - hiT, and the

additional constraint [(I-C 2 )-1 AjCih)(T) - ci is satisfied.

U-.
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Since [Cjh]() - 0, [Bih](0) 0 0, and [AiL1hJ(0) = h(O) for all functions

h, it follows that hi(O) - fi(O) - hi0 . Let wi(t) - Ai'1{ki1 ( ,Xi )

+ ki2( ,vi)](t). Substituting (5.1) into (1.), one obtains (I-3i)(I-C2 )hi -

fi Cjhj-Ai-IC2Yj.wi. Thus hi - (I-C 2 )- i Aifi.AiCjhj-C 2Yi+kil( ,Xi)+ki 2 ( vi)}.

It follows that hi(T)-hiT and [(I-C 2)-'AjCihil(T) - ci since li,v i satisfy

equations (6.1).

is In this decentralized control strategy the controller for the ith component

is free to choose the desired response Yi and the functions kil, ki 2 so that

condition (3.1) is satisified and equations (6.i) can be solved for Ai, vi. The

condition (3.j) is the only information about the jth component used to

determine the control law for the ith component. Here component controls are

coordinated in one step, i.e., for given ci, c2 component control objectives are

,-- achieved when controls are determined by (5.1), (5.2) and the constraints (3.1),

(3.2) are satisfied. Other decentralized control strategies typically require

off line iterative calculations between controllers for coordination. In our

strategy, choice of appropriate values for the parameters c, c2 leads to a

higher level coordination problem.

Optimization techniques can be used to determine specific component control

laws. For example, Reneke (1984) shows that a control law of form (5.i) is
optimal if the performance index J(ui,hi) - (1/2)J0[hi]2(T)+ Aihi]2()dr is

minimized subject to the constraints hi - fi+Bih.+Cjhj+vi, hi(T)

hiT, [Dih](T) - ci given that [Djhj](T) - cj and DiD j - 0. The standard

quadratic cost functional (1/2) T[vi ]2(T)+[hij2(r)dr can also be used as a basis

for the choice of component control laws, see Fennell et al. (1985) for an

example.

.15



Condition (4.I), (4.2), i.e., DlD 2 - D2D, - 0, represent a restriction upon

the interaction between the two components. Two components of the form

(1) satisfying such conditions are referred to as stably connected components.

The objective of this paper is to present geometric and algebraic

characterizations of the stably connected condition.

THEOREM 2. The components in (1) are stably connected if and only if ClAlC 2 - 0

and C2A21 - 0.

If h - (I-C2 )-If then h = f + C2h and Cih _ Cif + CiC 2h - Cif + C2Cih. By

uniqueness Cih - (I-C2 )-ICif, i.e. Ci(I-C 2) - (I-C2)Ci. Therefore DID 2 - D2Dl -

0 if and only if CIAIC 2 - 0 and C2A2C I - 0.

Thus although each component can affect the other the stably connected

condition implies there is no feed-through effect. Basic properties of finite

dimensional systems yield the following geometric characterization of the stably

connected condition.

THEOREM 3. The system (1) is stably connected if and only if

spanCl 12 , a , a. 2al2 .... ] CKer(a21 ) and

spanlc21, a22a2l, a22 221, ...] C Ker(a1 2).

Let y(t) - [AiC 2v](t) for some v, O<t<T, then invariance properties of

controllability subspaces imply y(t) belongs to spanCa1 2 , ll l2, a112al2,...

for 0<t<T. If spanCa1 2 , al1al2, all2al2,...] C Ker(a 21 ) then C1y - 0 and

- CIAIC 2  0 0. Similarly C2A2Cl - 0. For the converse, let w be in

* spanie1 2 , e11l 1 2 , a11
2a12,...] and choose v so that w - [AIC 2v](T). If

* CIAIC 2 - 0 then C1y - 0 with y - AlC 2v. It follows that a21Y(t) - 0 for 0<tT

and hence w belongs to Ker(c2 1).

6
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For example if

al I - a2 2  and al 2 a21 [l
-.. "then the system (1) is stably connected.

This characterization of stably connected components is similar to

geometric conditions that arise in disturbance decoupling problems, see Wonham

(1985). In fact, disturbance decoupling methods can be used to modify certain

systems of the form (1) through local feedback so that the resulting two

components system is stably connected.

Let A:Rn-Rn, B:Rm-Rn be linear transformations. With notation as in Wonham

(1985), a subspace V of Rn is called A-B invariant if there is a linear

transformation F:Rn-Rm such that (A+BF).V C V. For a subspace K of Rn, T(A,B,K)

is the set of all A-B invariant subspaces which are also subspaces of K. The

notation V* - supT(A,B,K) denotes the element of T(A,B,K) which contains all

other elements off T(A,B,K). The following remark is a restatement of the

solution to the disturbance decoupling problem.

Remark. If Im(a 1 2 ) C sup (a 1 1 , 1 ,Ker(a 2 1 )) and Im(a 2 1)C

supT(a22 ,82 ,Ker(a12)) then there exist matrices F1 , F2 such that-the two

component system

dhl/dt - (a1 1+81F 1 )h1 + a1 2h 2 + Olui

dh 2/dt - a2 1h 2 + (a2 2 $2 F2 )h2 + 82u 2

is stably connected.

Use of high gain, local feedback loops to reject Interconnections and to

aid in the sythesis of decentralized control laws has been reported in the work

Vof Young (1983), (1985).

T



III. DECOMPOSITION

For the system (2) consider the problem of choosing controls uI, u2 ,

independently, which steer the system frcm a given initial position to a desired

terminal position. In this section a method to decompose the control problem

for (2) into a problem for a two ccmponent system of the form (1)is presented.

y.. The approach uses standard methods to decompose systems of the form (2) into

block triangular form. Deccmposition of (2) into block triangular form using

controllability subspaces or strong components provides a geometric view of

control coordination possibilities.

Let F - (Fij), GI - (G1ij) and G2 - (G2ij) denote nxn, nxm, nxr matrices

with respect to the standard basis for X - Rn and let the components of x, u1 ,

u 2 be denoted by x - col(xl,....xn), u1 - col(u11,...,ulm), and u2 -

• %:' ]col (u21 ,.... u2r).

Controllable Canonical Form. A coordinatization of tne basic controllable

canonical form, introduced by Kalman, Ho, and Narendra (1961) will be presented,

see also Wonham (1985).

Assuming (2) is controllable, let 7i denote the controllability subspace

determined by the pair (F,Gi) i-I,?. Controllability implies X - XI+X 2. If

X3 - Xr)fX 2 then either X3 - 101, X3 - 1, X3 - 'X2 , or isa proper nontrivial

subspace X, and X2. In any case there exist subspaces X, and X2 such that

X1 - X1 X3 , X2 - X2 X3 and X - XI X2 X3.

With respect to the standard basis, let Wi denote a matrix whose columns

form a basis for Xi , i-I ,2,3 and let P be the nxn matrix defined by

P - [W1 ,W2,W]. Since X1 , X2 , and are A invariant the change of coordinates

, x - Ph leads to the controllable canonical form

dh/dt = + SBU + 62u2  (T)

8



where

[All 0 01 [01 ~

.-. 10 A 2 2  0 81 J62 - 22

U'3 1 A3 2 A3 3 J L813, L3 2 3 -

with a - P-FP, 81 P- IG 1 and 82 - P- 1G2.

Here the subsystems determined by All, $1, and A2 2 , 822 are controllable

whereas the system determined by the pair A3 3 , (13,S23) need not be

controllable, see Wonham (1985), as the example

.4'0 0 0] 81] 2-

illustrates.

Numerical computation of controllability subspaces using recent advances in

numerical linear algebra is considered in the work of Klema and Laub (1980), Van

Dooren (1981), Boley (1981).

Block Triangular Form. Transformation of (2) into block triangular form

can be achieved by graph theoretic methods, see Siljak (1978), Pichai, - et.

al. (1983) or Michel et. al. (1978). Let D - {V,EI be the directed graph with

AF vertex set V - SUC 1lUC 2 where S - lxl,...,Xn}, C1 - {Ull,...Ulml, C 2 -

{u 2 1 ,...U2 and edge set E - {(xi,xj):aji-O} U f(uli,xj):Glji*0}U

.(u2i,xj):G2ji-Of. A subgraph D - [V ,E I of D is called a strong component

provided for each pair of vertices xi, xj in V there is a directed path from xi

to xj with each edge in E and V is maximal with respect to this property. Let

Di - fVi,Ei}, i-1,...m denote the strong components of D. Clearly Vfl(Vj -

.A 0, EIjfEj - 0 for iol and V -L-. 1 Ei . The condensation graph CD -

jCv,Cz} has m vertices, one associated with each strong component, say vi-Di,

and an edge from vi to vj if and only if there is a u in Vi and a v in Vj such

4



that (u,v) is in E. The condensation graph determines a relabeling of indicies

in (2) so that the resulting system matrix is block lower triangular. Hence,

the system is decomposed into a "hierachy of m interconnected components". Let

S I - {Dk: for scme i there is a path in the condensation graph frcm Uli to Dk.

Similary define S2 . Let S3 - S1  S and S1 - Sl-S 3 , S2 - $2-S3 . Then S1 ,

S $2, S3 determine a relabeling of vertices so that (2) is of the form (7) with

All 0 0 110

0 A2 2 0 I = 0 2 322

LA3 1 A3 2 A3 13L J 13J L 2 31.

Control Problem Decomosition. Controls u1 and u 2 steer the solution of (2)

from x(0) = x0 to x(T) - xT if and only if ul, u2 steer the solution of (7) from

h(0) = h 0 to h(T) = hT where ho - Pxo, hT = PxT if (7) arises from the

controllable canonical form or the components of ho, hT are obtained from those

of xO, xT by using the permutation of indices which determines the block lower

triangular form. To further decompose the problem let 0 < mom 1 ,m2 < 1,
m o ,

hl0 = hIT - 0

I -mO ) hO3 - IL-mO )hT3 i

[01 1
h20 h02 h2T - hT2

L m0h0 3 - LM~hT3

and consider the following two control problems.

1

p 0.



F-

CCNTRCL PRCBLEM I. Find ul which steers the solution of

Al 0 0 0 0 0 -
... dhl/dt =0 0 0 hl + m 2  0 h 2  0 ul (7-1)

dh-/t (--ml)A31 0 (1-ml)A 3
1  L A32 A33

1  L37

from hi(O) - hi0 to hi(T) - hIT.

CCNTRCL ?RCBLEM II. Fine u, which steers the solution of

[0 a 00 0 0
• dh2/dt = ml 0 0 hl + A 2  0 h2 a2 u2  (7.2)

LA3 1  0 A33 (1-m2)A3 2 (1-m2)A33

from h2(0) -h20 to h2(T) - h2T.

Here (7.1) and (7.2) are of the form (1). Let ul and u2 solve CONTROL

PROBLEMS I, Ii respectively. Notice that the second component of hl and the

first component of h2 are always zero. It follows that h = h1+h2 satisfies (7)

and h(O) - ho, h(T) = hT. That is u1 and u2 steer the solution of (7) from

h(O) - h0 to h(T) - hT.

Clearly if ml=0 or m2 =O then the components in (7.1), (7.2) are stably

connected.

THECREM 4. The two components of (7.1), (7.2) with ml and m2 non-zero are

stably connected if and only if A33A3 1 - 0, A3 3A32 = 0, and A3 3
2 . 0.

With notation as in (7.1), (7.2) the controllability subspace determined by

(c1l,a12) is spanned by the columns of the matrix

0 0 0 a 0 .

0 0 0 0 0 . ..

LA32 A3 3 A3 3A3 2 A3 3
2 A3 3

2A32

.4.'.. ,,I



A vector x - col(xl,x 2,x3 ) is in the Ker(a21 ) if and only if A31x1 A33x3 - 0.

Clearly the columns of the above matrix lie in the Ker(a 21 ) if and only if

0 0 and A332 _ 0. Similarly, the controlability subspace determined by

* (a2 2 ,a2l) lies in the Ker(a 1 2 ) if and only if A3 3A3 1 - 0 and A3 3
2 - 0. The

result follows frcm Theorem 2.

With notation as in (1). Theorem 4 implies that the components in (7.1),

(7.2) are stabl7 connected if and only if ao1a12 = 0 and al2a-) - 0.

IV. INTERCONNECTED HIERARCHIES.

Graphic theoretic conditions for (1) to be stably connected are presented

in the case all and a 22 have a hierarchial structure. Assume

all (a11,ij)i, j=l,...m and a2 2 - (a22,ij)i, j-1,...,l with a11,ij=O and

a22,ij= 0 for i>j. Let a12 - (a12,ij) and a 2 l - (a21,ij) denote mxn, nm

matrices, respectivley. With notation as in Section III the system directed

graph D=(V,E) may be described as follows V = VlUJV 2 - {xll,...,xlm}U

Ix 2 1 ,...x 2 -1 and E - {(xli,xlj): all,jiOt -U {(Xli,x2j): a21,ji-01 U {(x2i,x1j):

a 12,jivO} U (x21,x2j): a22,ji*01. Such a directed graph may be depicted as

- .follows:

0

COMPONENT I COMPONENT II



ThECREM 5. With D-(V,E) as detined above, the components in (1) are stably

connected if and only if there exist no directed paths with initial and terminal

nodes in Vi. which transverse a node in aj or {ijj - {1,2}.

; To see that spaniel2, a12(112 , all12a11,..., ] : Ker(a2l) we argue that

a2,lljk a12 - 0 for k-0, I,.,-.The product a21al2 = 0 since there are no

directed paths of length two with initial and terminal nodes in V2 which

"]"ttransverse a node in Vt. The product awoalla12

paths of length three with initial and terminal nodes in V2 which transverse two

nodes in V1 . Similarly a2lallk a 2 - 0 for k-O,l,...,m-1.

Theorem _-generalizes to the case where DI - (Vl,El) and D2 - (V2,E2)

represent the condensation graphs determined by all and a-2 respectively. Here

all, a22 are block triangular, and a12, a21 are partitioned accordingly.

CONCLUDING REMARK

A large scale system with multiple components is said to be stably

connected provided each pair of components satisfy the stably connected

condition. The decentralized control strategy presented in this paper can be

'V generalized to a decentralized control strategy for stably connected systems.

If a system matrix is block triangular then the blocks determine components

such that the system is stably connected. On the other hand, one may view the

components as basic building blocks and the results of this paper indicate how

to connect the components together to form more complex systems while at the

same time maintaining some autonomy in the choice of component control laws

laws.

.-
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